Package: missoNet 1.2.0

Yixiao Zeng

missoNet: Missingness in Multi-Task Regression with Network Estimation

Efficient procedures for fitting conditional graphical lasso models that link a set of predictor variables to a set of response variables (or tasks), even when the response data may contain missing values. 'missoNet' simultaneously estimates the predictor coefficients for all tasks by leveraging information from one another, in order to provide more accurate predictions in comparison to modeling them individually. Additionally, 'missoNet' estimates the response network structure influenced by conditioning predictor variables using a L1-regularized conditional Gaussian graphical model. Unlike most penalized multi-task regression methods (e.g., MRCE), 'missoNet' is capable of obtaining estimates even when the response data is corrupted by missing values. The method automatically enjoys the theoretical and computational benefits of convexity, and returns solutions that are comparable to the estimates obtained without missingness.

Authors:Yixiao Zeng [aut, cre, cph], Celia Greenwood [ths, aut], Archer Yang [ths, aut]

missoNet_1.2.0.tar.gz
missoNet_1.2.0.zip(r-4.5)missoNet_1.2.0.zip(r-4.4)missoNet_1.2.0.zip(r-4.3)
missoNet_1.2.0.tgz(r-4.4-x86_64)missoNet_1.2.0.tgz(r-4.4-arm64)missoNet_1.2.0.tgz(r-4.3-x86_64)missoNet_1.2.0.tgz(r-4.3-arm64)
missoNet_1.2.0.tar.gz(r-4.5-noble)missoNet_1.2.0.tar.gz(r-4.4-noble)
missoNet_1.2.0.tgz(r-4.4-emscripten)missoNet_1.2.0.tgz(r-4.3-emscripten)
missoNet.pdf |missoNet.html
missoNet/json (API)
NEWS

# Install 'missoNet' in R:
install.packages('missoNet', repos = c('https://yixiao-zeng.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/yixiao-zeng/missonet/issues

Uses libs:
  • openblas– Optimized BLAS
  • c++– GNU Standard C++ Library v3

On CRAN:

conditional-graphical-lassomissing-datamulti-task-regression

3.70 score 1 stars 2 scripts 157 downloads 3 exports 28 dependencies

Last updated 1 years agofrom:5cbbd9969b. Checks:OK: 7 NOTE: 2. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 07 2024
R-4.5-win-x86_64NOTENov 07 2024
R-4.5-linux-x86_64NOTENov 07 2024
R-4.4-win-x86_64OKNov 07 2024
R-4.4-mac-x86_64OKNov 07 2024
R-4.4-mac-aarch64OKNov 07 2024
R-4.3-win-x86_64OKNov 07 2024
R-4.3-mac-x86_64OKNov 07 2024
R-4.3-mac-aarch64OKNov 07 2024

Exports:cv.missoNetgenerateDatamissoNet

Dependencies:BiocGenericscirclizeclueclustercodetoolscolorspaceComplexHeatmapcrayondigestdoParallelforeachgenericsGetoptLongglassoGlobalOptionsIRangesiteratorsmatrixStatsmvtnormpbapplypngRColorBrewerRcppRcppArmadillorjsonS4Vectorsscatterplot3dshape

An Introduction to missoNet

Rendered frommissoNet.Rmdusingknitr::rmarkdownon Nov 07 2024.

Last update: 2022-10-11
Started: 2022-08-05